
3. A.A. Abrashkin and E. I. Yakubovich, Preprint of the Institute of Applied Physics, 
Academy of Sciences of the USSR, No. 64 (1983). 

4. H. Lamb, Hydrodynamics, 6th edn., Dover (1932). 
5. N.E. Kochin, I. A. Kibel', and N. V. Roze, Theoretical Hydrodynamics [in Russian], 

Part i, Fizmatgiz, Moscow (1963). 

BOILING MODEL FOR A FLUIDIZED BED OF PARTICLES 

S. P. Kiselev and V. M. Fomin UDC 539.529 

A mechanism for boiling of a fluidized bed was examined in [i]. Due to hydrodynamic 
instability the solid particles acquire random motion, and as a result of collisions 
between particles part of the energy of random motion is converted to rotation of 
the particles. A rotating particle experiences a Magnus force which considerably 
increases the random motionand leads to spontaneous boiling of the layer. For this 
mechanism there is typically a minimum boiling time Ty, defined basically as the time 

to develop a hydrodynamic instability. It is shown in this study that besides the 
spontaneous mechanism there is an induced mechanism for boiling of the bed arising 
from the generation of random motion in one particle layer. Particles in that layer 
boil, transmitting a perturbation to the energy of the next layer, and leading to 
layer boiling in a manner analogous to the propagation of a detonation wave in solids. 

I. We consider a bed of rather densely packed spherical particles at rest, supported on 
a grating permeable to gas, through which gas is circulated from below. When a certain gas 
velocity is reached the particles become "weightless", i.e., the gravity force becomes equal 
to the drag force. Such a bed of gas and particles is conventionally called fluidized. 
However, this state of the bed is unstable, and after a certain time the bed boils. The 
behavior of the particles in a boiling bed is reminiscent of that of gas molecules, and 
therefore by analogy we shall call them a gas of particles. The system of equations describing 
the motion of the mixture, allowing for the Magnus force, as given in [2], and in the notation 
adopted in [3], has the form 
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where p~: is the gas density; m~ and m2 are the volume content of the phases; p22 is the den- 
sity of the particle material; px is the gas pressure; p2 is the particle gas pressure; T~ is 
the gas temperature; c is the random particle velocity; T2 is the particle temperature; v~ is 
the gas velocity; v2 is the particle velocity; f~2 is the interphase interaction force per 
unit volume; ez is the specific energy of the gas; e2 is the specific internal enersy of the 
particles; ~2 is the specific energy of the gas of random motion of the particles; q~2 is the 
heat flux from the gas to the particles per unit time; Q is the rate of transfer of energy 
from the gas to energy of random motion of the particles per unit volume; QM is the work done 
by Magnus force; QD is the rate of dissipation of energy of random motion into thermal energy 
on particle collisions; k is the coefficient of momentum restitution for a frontal collision 
of particles, assumed equal to 1 below (k = i), corresponding to elastic collisions of the 
particles; m2* is the volume content of the solid phase with the particles densely packed; l 
is the distance between particles; d is the particle diameter; and c d is the drag coefficient. 
Since Re = Ivl -- v21d/~ >> 1 (~ is the kinematic viscosity) we may choose c d = 1/2. Below we 
shall denote the mixture parameters for dense particle packing by the subscript ,. Thus, the 
problem is to determine the rate of boiling of the bed D in the region ~<O~x~L,O.~t~T> 
(Fig. i). Here L is the bed thickness, T is the bed boiling time for fixed gas flow and 
particle parameters satisfying the steady-state system of~equation~ and the given constant 
parameters of the gas flow at the bed inlet (j = J, vl = vl, pz = Pz, TI = TI) and for fixed 

bed porosity mslx= o = ms (J is the gas flow rate). The coordinate system is chosen so that 

the direction of motion of the gas in ~ is positive, and the direction of action of the gravity 
forces is negative (g =--gex). 

Assuming in the equations of the system (1.1) that all the partial derivatives are zero, 
and v2 = O, c = O, and neglecting the heat transfer between the gas and the particles and the 
variation of gas temperature, we obtain a system of ordinary differential equations describing 
the steady state of the system in the form 

d . dv 1 dp~ 
d--~" (PlVl) = 0.,: PiVl ~ = - -  ml  ~ - -  ]is, m i + ms = i t  

f l s - - m 2 ~ x  1 - g p s = O , ~  P l = P l i m l ,  Ps----P~2m2, T l =  ~1, 
[ 

p ~  pliRP1, /is = (3/4) ~.~P11~,~/d 
with the initial conditions 

(p11, vl, m0E ~=0 = (~11, Vl, ml). 

(1.2) 

Reducing the system of equations obtained (1.2) to the normal form, we have 

-~x =-- 7 ~ ~p2 gp~sml , ]=mlPlxVl ,~  

dp11_ (c 11v  ) ~--f - ~ \ r gps~ ~ ca = (3/4) e~/d~ 

and, dividing the first equation by the second, we obtain 
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This equation can be integrated in the region O~x~L, since it has no singularities any- 

where in the region (m, < i). The solution of the equation will be a relation v: = v1(px,, 

A) (A is a constant of integration), and by substituting this into the second equation and 

allowing for the initial conditions we obtain v~(x), p~1(x), m~ , p~(x); here the quantities 

with superscript zero refer to the zero-order approximation. 

2. We now consider the matter of propagation of a boiling wave through the particle gas. 
For the particles this wave is "strong", and we shall therefore use the full system of equa- 
tions for the second component of Eq. (i.i). For the gas we use the linearized equations for 
perturbations, which we obtained by taking account of the steady state as a zero-order approxi- 
mation. We represent the desired solution in the form 

v, = v ~ (x) + v,  ~ (x, t), p~ = pO (x) + Pi  (x, t),: 
Pl = po (x) --[- Pl (x, t),. ml = m ~ (x) + m I (x, t), 

T, = 1'1 (T:IT1 << l) ,  v~ = v~ (x, t), p2 = P,  (x, t). 

(2.1) 

Substituting Eq. (2.1) into system (i.i), neglecting effects of heat transfer between the gas 
and the particles, and taking account of Eq. (1.2), we obtain the equations 

a (p , )  + o ( p b l  + pi~;) = o,  ( 2 . 2 )  
a'-T -ag 

P~ T / - '  *' + (P~ + PLY~ ~ 7  + p ,v , -a7  - m~ e~ 

_i OP~ 
-- Pllml -{- Pll~l,, 

( ( 4 ) )  
s = ~ + Ir m~ = -- m I 21 

G = I~ - gK - ~ ap~, 1 ~ 

where 

I P~ I'*~l << ' 
i a * l  

The inequalities (2.3) hold for the actual parameters p~ T~, ma, 

(2.3) 
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P~>3~~ -~, ~1<<~, ,  (~i)'/~<<~ 
P2'~ rrt~ " I m ~  / ' (2.4) 

After the particles are excited at the front of the wave the Magnus force becomes active 

(Q > 0) which compensates for the particle energy loss sz on collisions. An estimate of the 
energy release rate shows that the energy release occurs in a narrow zone of thickness 
s ~ 8d, and we therefore consider the wave front as a discontinuity. By analogy with [4] 
we go from the differential equations (2.2) to the integral laws of conservation, and choose 
the integration contour G (see Fig. i) as in [4]. Using the inequality (2.3) we put [~] = 0 
and, omitting terms of higher order of differentiability, we obtain 

[p]]--P~ [v~]-- [m~l(v~~ - D)< 

[ [ 0 1 1 ]  --'~ 0,, [P2 (/"g - -  D)] = O, J~ + (% = 0., 

(2.5) 

0 1 [P2(V2 D) 2 Jr Pal = 0~ PS =P2(8~,m'2) + m2Plt 
where the square brackets denote the jumps of'-the appropriate quantities at the discontinuity; 

and D = dx/dt is the wave velocity. The first two relations of system (2.5) coincide to an 
accuracy of o((m,1) 2) with the expressions obtained in [5] on the basis of a model equation 
describing motion of a gas through a porous layer. As boundary conditions ahead of the dis- 
continuity we take ~ = (s2, p=) = 0. Behind the wave front the condition 

Q = 0  (2.6) 

holds, which defines the relation ~2 = r and closes the system (2.5). The system of 
equations obtained, (2.5) and (2.6), has an exact solution. Using the second inequality in 

ms , t 0 0 2 
, o -y~ . We rewrite the equation of Eq. (2.4) we obtain the relation ~ t - ~ - ~ - b  ~ 

state and the particle gas enthalpy equation in the form p~----%/0, J2----p~(O$ +20), where 

8= ~2--02, @2 ---- I/(p~m2), @~----i/(p22m2), 0/@~<<I. Since the state is unperturbed ahead of the 

shock wave, we have 8 + = 8 o , and by substituting J2(0) into the system (2.5), we obtain, to 

an accuracy of o((0/@2) a) 

(2.7) 
o ~ - o p~ = ~ (o ~  o) (30 ~  o~ 

e;  ': @;)~ ': P~ = P+ kJO-  o~ ' 

E = o~ (~o _ ~)~ (oo_  o) ~] = ( ~ o _  ~ )  o o _  o 

~0 p01 (v ~  D)~, ; +  = 0, Av~ = v;  - -  v~ + 

0 0 P110vl 
The condition (2.6) gives c~-14---r~ or, allowing for the equation of state, 

P22 ~2 

p~=3.04)~(~o ~o y (2.8) 
\~  ~] 0, 

and h e r e  p+ i s  the  p r e s s u r e  and 0+ i s  the  d i f f e r e n c e  of  t he  s p e c i f i c  volume from ~ ahead of  t h e  shock  
wave and t h e  r e m a i n i n g  q u a n t i t i e s  d e s c r i b e  tile s t a t e  beh ind  the  shock  wave.  We s h a l l  s t u d y  the  

p r o c e s s  o f  b o i l i n g  o f  the  p a r t i c l e  gas i n  the  (pa,  8) p l a n e  ( F i g .  2 ) .  
+ 

3.  I n  a c c o r d a n c e  w i t h  the  t h i r d  e q u a t i o n  o f  the  s y s t e m  (2 .7 )  (Hugonio t  a d i a b a t )  and pa = 

0 we f i n d  t h a t  the  s t a t e  b e h i n d  the  shock  wave l i e s  on the  v e r t i c a l  s t r a i g h t  l i n e  p a s s i n g  
t h r o u g h  the  p o i n t  C, a t  some p o i n t  B. The t r a n s i t i o n  from the  i n i t i a l  s t a t e  A to  B o c c u r s  i n  
a jump and i s  d e s c r i b e d  by t he  second  e q u a t i o n  o f  (2 .7 )  ( t h e  law of  c o n s e r v a t i o n  o f  momentum). 
The t a n g e n t  o f  t he  a n g l e  o f  i n c l i n a t i o n  o f  AB to  the  a b s c i s s a  a x i s  d e f i n e s  the  shock  wave 
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velocity, and is found in turn by the intersection of the straight lines AB and OB (the line 
OB is described by Eq. (2.8)). Thus, the point of intersection of the lines AB, OB and CB 
determines the desired solutions: 

0 = = ( 41 

Using the second equation of the system (2.7), we obtain 

r 

/ 
which gives 

where D~ > 0 corresponds to the wave propagating in the positive direction (direction of the 
gas flow), and D2 < 0 corresponds to the wave propagating in the negative direction. The 
condition (2.4) on the parameter (P~I/p22) ensures that the expression under the root sign is 
positive. We note that DI > ID21. The reason is that the stagnating action of the perturbed 
gas flow on the particles at the wave front DI is less than for the wave D2: 

0 0 2 
I+, [Pl] = ~11 (Vl -- D1) [ ~ ] ,  [p~]- = ~1 (v~ +ID2 I) 2 [ ~ ] ,  

m 1 and hence, allowing for [ i] < 0, we obtain [p~]- < [p~]+< 0. Another special feature of the 
solution obtained for Eq. (2.7), i.e., Eq. (3.1), is the relation 

20~ (0) (3.2) 

This fact followsfrom the assumption that the particles are incompressible, and therefore the 
velocity of transmission of a perturbation in a particle is infinite. It can be seen that for 
a displacement of the particle by a mean free path ~ in time T the perturbation is transmitted 
a distance I + d, and therefore, taking into account that I << d we have v2/D = I/(l + d) = I/d, 
which coincides with Eq. (3.2) to within a factor of two. Thus, on the basis of our solution 
of Eq. (2.7), i.e., Eq. (3.1), we can assert that there is an induced mechanism for boiling of 
the bed. 
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